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One of the most important issues in CFD modeling of ablation process is the formulation of boundary 

conditions at the gas-surface interface. These boundary conditions cannot be obtained without analytical or 

parametric numerical modeling of the Knudsen layer formed near the evaporating surface. Analytical models 

are therefore of interest for numerical simulation of ablating flows. Recently Pekker, Keidar, and Cambier 

developed a new analytical model of the Knudsen layer, which takes into account the temperature gradient in 

the bulk gas. This model uses a bimodal velocity distribution function which preserves the laws of conservation 

of mass, momentum, and energy within the Knudsen layer and converges to the Chapman-Enskog velocity 

distribution function at the outer boundary of the Knudsen layer.  The main objective of this work is to provide 

detailed analysis of the applicability of this analytical model of the Knudsen layer through comparison of results 

with the numerical solutions of the ES-BGK model kinetic equation and DSMC results. 
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I. INTRODUCTION 

The first analytical model of the Knudsen layer at an ablating surface was introduced by Hertz and 

Knudsen [1, 2]. This model assumes no collisions in the Knudsen layer, no heat transfer in the bulk gas, and 

complete absorption of all incoming molecules at the wall, which corresponds to the condensation coefficient 

equal to unity. This classical model along with its generalizations has been widely used in CFD modeling. In 

their recent paper, Bond and Struchtrup [3] have extended the Hertz-Knudsen model to the case of thermal 

conduction in the bulk gas, considered diffuse and specular reflections of particles, and allowed for non-flat 

wall-gas interfaces. However, their model still ignores collisions in the Knudsen layer and therefore the law of 

the conservation of momentum does not hold there. It should be noted that the Hertz-Knudsen assumption of no 

collisions in the Knudsen layer is not self-consistent, because it assumes no relaxation in the kinetic (Knudsen) 

layer, although the velocity distribution function at the ablative surface has to relax to the gas bulk (equilibrium) 

distribution function in the Knudsen layer.      

Anisimov [4] was the first to introduce a bimodal velocity distribution function in the Knudsen layer in 

order to consider the vaporization of a metal surface exposed to laser ablation. In this model, Anisimov used 

mass, momentum, and energy conservation laws to determine the parameters of his bimodal velocity 

distribution function, thus accounting for collisions in the Knudsen layer. The assumptions in his model are: (1) 

the flow velocity at the outer boundary of the Knudsen layer is equal to the speed of sound; (2) the gas 

temperature in the equilibrium (bulk gas) region outside the Knudsen layer (see Fig. 1) is constant, i.e. there is 

no conductive heat flux to the ablative surface; and (3) all particles that hit the ablative surface are absorbed by 

it. 

Since then, the Anisimov method has been extended to the cases of half-space evaporation problem [5] 

and evaporation into dense plasma [6-10], where the flow velocity at the outer boundary of the Knudsen layer 

was assumed to be smaller than the speed of sound and dependent on the properties of the bulk gas. In all these 

models the authors still assume no conductive heat flux to the ablative surface and complete absorption of 

particles by the ablative surface. However, the temperature in the plasma core in [6-9] is much higher than the 

temperature of the ablative surface and, therefore, the thermal conduction can be significant and has to be 

included in a Knudsen layer model. Pekker, Keidar, and Cambier [11] used a new bimodal velocity distribution 

function in the kinetic layer and built a more general Knudsen layer model which takes into account the 

conductivity of the bulk gas and can therefore be used to model flows with large temperature gradients. This 

model uses a new bimodal velocity distribution function in the Knudsen layer, which preserves the laws of 

conservation of mass, momentum, and energy and converges to the Chapman-Enskog velocity distribution 

function at the outer boundary of the layer.  However, as in all other bimodal velocity distribution function 

models, the condensation coefficient in work [11] was assumed to be equal to unity. Then Pekker [12] extended 

model [11] to the case of arbitrary condensation coefficient in which he also assumed a constant 

accommodation coefficient that specifies the fractions of diffuse and specular collisions of incident particles on 

the ablative surface. This model has allowed the author to obtain gas-surface boundary conditions that can be 
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used for CFD modeling of ablation processes with thermal conduction and arbitrary condensation and 

accommodation coefficients. 

The ablation process can generally be described by the Boltzmann equation and, therefore can be 

modeled using methods developed for the solution of this equation, such as the direct simulation Monte Carlo 

(DSMC) method [13-16]. When the derivation from equilibrium is expected to be small, ablation can also be 

described by a Bhatnagar-Gross-Krook (BGK) kinetic model equation or by more advanced ellipsoidal 

statistical BGK (ES-BGK) model [17-19]. In this case, no prior approximation for the gas velocity distribution 

function in the Knudsen layer is necessary. However, the high computational costs of these methods 

significantly limit their use. The authors of [5, 14-16, 20] have demonstrated that the models that utilize a 

bimodal velocity distribution function [4] are in good agreement with DSMC simulations and numerical 

solutions of BGK equation for the evaporation of a monatomic substance with condensation coefficient equal to 

unity. However, a thorough verification of the new analytical models of the Knudsen layer [11, 12] through 

detailed comparison with kinetic modeling and Monte Carlo simulation is needed. 

The main objective of this article is to provide detailed analysis of the applicability of Knudsen layer 

model [11] by comparing its predictions with ES-BGK and DSMC results. To validate model [11] we consider 

a one-dimensional evaporation/condensation process between two parallel plates for different Knudsen 

numbers. The analytical model of the evaporation process between ablative and absorbing plates, Fig. 1, 

including the Knudsen layer model [11] is described in Section II. The description of the ES-BGK and DSMC 

methods is given in Section III. Numerical results and discussion are presented in Section IV 

 

II. ANALYTICAL MODEL 

 Knudsen Layer. Figure 1 shows the schematic representation of the problem, were  and  are 

the temperatures of the A-ablative and B-absorbing surfaces, 

AT BT

Aeqn ,  and  are the equilibrium vapor 

densities of A and B wall materials at temperatures  and , respectively, and  is the distance between 

the plates. For the sake of simplicity, in the model the condensation coefficient at both surfaces is taken to be 

unity.  

Beqn ,

AT BT L

 

 

 

 

 

 

 

 
Fig. 1. Schematic representation of the model 
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It should be stressed that the temperatures of the wall surfaces, equilibrium vapor pressures, molecular 

mass of vapor molecules and the thermal conductivity of the bulk vapor gas are input parameters of the model. 

We will choose their values in our calculations only to illustrate the methods and verify the applicability of the 

analytical Knudsen layer model [11]. Thus, they will not correspond to an actual vaporization process, wall 

materials, etc.; however, the model certainly can be used for modeling real vaporization processes.    

Equations describing the Knudsen layer [11] are 
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Here, index i denotes either surface A or surface B (see Fig. 1); , , and   are the thermal 

velocity, number density, and directed vapor velocity of the vapor at the outer boundary of the i-th Knudsen 

layer, Fig. 2; is the thermal velocity of vapor corresponding to the wall temperature ;  is the mass of 

the vapor molecule;  is the ratio of the bulk gas velocity to the thermal velocity at the outer boundary of the i-

th Knudsen layer, Fig. 2. Equations (1) – (3) correspond to the laws of mass, momentum, and energy 

conservation, respectively, inside the Knudsen layer [11]. In Eq. (3) 

ibulkTV , ibulkTn , iu

iTV iT m

ix

iTτ  is a thermal conduction parameter, 
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are the gas mean-free-path and characteristic gradient length at the outer boundary of the kinetic layer, 

respectively, and gasχ  is the thermal conductivity of the bulk gas. Condition (6), Tmfp xδλ << , is needed for 

the Chapman-Enskog expansion method to be valid [31] and is used in the derivation of Eq. (3) [11]. The 

parameter β  in Eqs. (1) – (3) is an unknown variable that must be obtained in the solution; essentially, it 

represents nonequilibrium effects caused by collisions in the Knudsen layer [4]. It is worth noting that the case 

of  corresponds to the ablation process, Fig. 2, while the case of 0>iu 0<iu  corresponds to absorption 

process.  
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Net ablative flux 
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Fig. 2. Schematic representation of the layer structure near the ablative surface 
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Thus, if we know two parameters, for example  and Ax aTτ , the system of Eqs. (1) – (3) is complete (the wall 

temperature and equilibrium vapor number density  are assumed to be known – they are input 

parameters of the model) and ,  and 

AT Aeqn ,

AbulkTV , Abulkn , β  can be calculated, then using Eqs. (4) and (5) we can 

calculate   and . AbulkT , Au

 

Gas Bulk. Now let us consider the gas bulk region. In this region, Fig. 1, the mass flux, momentum 

flux, and energy flux equations [21] are 
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is the gas bulk temperature and gasχ  is the thermal conductivity of the bulk gas.  Obviously, in general the gas 

bulk density, bulkn , the bulk gas temperature, bulkT , and the bulk gas directed velocity, bulku , are dependent 

on the x-coordinate, Fig. 1. In the stationary case, considered in this paper, the mass, momentum, and energy 

fluxes , , and  are conserved inside the bulk gas region. The boundary conditions at the outer 

boundaries of the A- and B-Knudsen layers can be written as 

xM xP xE

  

Abulkbulk nxn ,)0( == ,    AbulkTbulkT VxV ,)0( == ,      Abulkbulk uxu ,)0( ==      ,  (13) 

 

Bbulkbulk nxn ,)0( == ,    BbulkTbulkT VxV ,)0( == ,      Bbulkbulk uxu ,)0( ==      .  (14) 
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It is worth noting that since the velocity distribution function in the Knudsen layer [11] converges to the 

Chapman-Enskog velocity distribution function at the outer boundary of the Knudsen layer, Fig. 2, the 

boundary conditions (13) and (14) automatically preserve the fluxes of mass, momentum, and energy within the 

entire region between the two walls, including both Knudsen layers. 

Expressing ,  and  via , , , and , Eqs. (9) – (13), we obtain bulku bulkT bulkn bulkTV xE xM xP
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Thus, by numerically solving Eq. (15) for for given , , and , we can calculate the gas thermal 

velocity distribution vs. the x-coordinate in the gas bulk region, and then, by using Eqs. (12), (16) and (17) we 

obtain the distributions of , , , and finally calculate the thermal conduction parameter 

bulkTV xE xM xP

bulkT bulku bulkn Tτ  , Eq. 

(6), at the outer boundary of the Knudsen layer. 

 

Algorithm. Now let us describe a possible algorithm for calculating the gas bulk distributions and 

parameters of the Knudsen layers for given wall surfaces temperatures and corresponding equilibrium vapor 

number densities.  

 

1. Assume initial values of  and Ax aTτ . 

2. Calculate all parameters of the A-Knudsen layer as described in the Knudsen Layer Section. 

3. Use Eqs. (6) – (8) to calculate mass, momentum, and energy fluxes at the outer boundary of the 

Knudsen layer, where and the temperature gradient can be determined from Eqs. (6) – (8). 

4. Integrate Eq. (15) to obtain , the gas thermal velocity at the outer boundary of the B-Knudsen 

layer. 

BbulkTV ,

5. Use Eqs. (16), (17) and (12), and then (6) – (8) to obtain  , , , and Bbulku , BbulkT , Bbulkn , BTτ . 
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6. Use Eq. (4) to calculate . Bx

7.     Use Eqs. (1) – (3) to calculate Bβ , wall temperature , and equilibrium vapor density . *
BT *

,Beqn

8. If the calculated  and  are not equal to given wall temperature  and equilibrium number 

density  we have to go Step 1 and change  and 

*
BT *

,Beqn BT

Beqn , Ax aTτ . 

 

In this work we have used the Newton-Raphson method to iterate the values of  and Ax aTτ . The mass of vapor 

molecules and gas thermal conductivity in the bulk region have been chosen as    

 

7467.7=m kg     and W/(m·K) ,   (18)  4/3)273/(10022.0 Tgas ⋅=χ

 

and the input parameters of the runs are shown in Table 1. Since there are two Knudsen layer, Fig. 1, the 

Knudsen in the Table 1 have been taken as Lmfp /2 λ⋅ , where mfpλ  has been calculated using Eq. (7) for 

. KT  300=
 

Table 1. Input parameters for modeling 

 ][mL  ][KTA ][ 3
,

−mn Aeq ][KTB ][ 3
,

−mn Beq ][mmfpλ Lmfp /2 λ⋅

1 5.24e-4 300 4.59e+22 413.24  3.06+22 1.31e-4    0.5 

2 1.31e-3 300 4.59e+22 413.24  3.06+22 1.31e-4    0.2 

3 2.62e-3 300 4.59e+22 413.24  3.06+22 1.31e-4    0.1 

4 5.24e-3 300 4.59e+22 413.24  3.06+22 1.31e-4   0.05 

5 1.31e-2 300 4.59e+22 413.24  3.06+22 1.31e-4   0.02 

6 2.62e-2 300 4.59e+22 413.24  3.06+22 1.31e-4   0.01 

 

    

We have divided the distance between the plates, Fig. 1, into 104 equal-length intervals to numerically 

solve Eq. (15) and used 104 iterations in Newton-Raphson method to obtain  and Ax aTτ .  The code was 

written in Java; each run took a few minutes on a PC with a Pentium 4 processor. Increasing the space steps by 

a factor of two (i.e., using 5×103 intervals) led to relative errors in  and Ax aTτ  of 7·10-6 and 3.5·10-4, 

respectively, for = 2.62·10L -2 m; they monotonically decrease with L  down to 7·10-7 for L = 5.24·10-4 m. 
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III. KINETIC APPROACHES 

 Two kinetic approaches have been used in this work for the validation of the Pekker-Keidar-Cambier 

analytical model [11] of the Knudsen layer, the DSMC method and the solution of the ES-BGK model kinetic 

equation. 

 In the DSMC calculations we have used the DSMC-based SMILE computational solver (details on the 

tool may be found elsewhere [22]) with a uniform spatial grid for modeling collisions and macro parameters. 

The one-dimensional problem shown in Fig. 1 was modeled using the 2D module of SMILE with a single row 

of cells bounded by specularly reflected walls in the transversal direction, and the longitudinal walls at A- and 

B-surfaces, Fig. 1, absorbing all incident particles. The majorant frequency scheme [23] was employed for 

modeling molecular collisions. The variable hard sphere (VHS) model [24] was used for intermolecular 

interactions, with the reference particle diameter of 2.8 A at a reference temperature of 273K, and the exponent 

in the viscosity-temperature dependence of 0.75. The DSMC modeling was conducted for = 5.24·10L -4 and 

5.24·10-3 m for which the grid and number of molecules convergence were obtained. The results shown below 

were obtained for 4,000 cells and about 4 million molecules, and ran over 1 million time-steps that took 

approximately 300 CPH. The numerical error is estimated to be about 1 percent. 

 For solving ES-BGK equation, we have used a finite volume solver SMOKE developed at ERC Inc. 

SMOKE is a parallel code based on conservative numerical scheme developed by Mieussens [24]. A second 

order spatial discretization is used along with implicit time integration. The boundary conditions at A- and B-

surfaces were set to simulate the condensation coefficient of unity, and the distribution function in the ghost 

cells was equilibrium with the corresponding parameters specified in Table 1. The viscosity-temperature 

dependence was the same as in the DSMC modeling.  The spatial grid convergence was achieved increasing the 

number of nodes from 200 to 2,000 with non-uniform cell sized to account for stronger gradients near the walls. 

The convergence on the velocity grid was also studied with the number of bins in  directions ranging 

from (10, 10, 10) to (30, 20, 20). The longest run for = 2.62e-2 m, Table 1, took approximately 15 CPH. The 

numerical error is estimated to be less then 1.5 percents.   

),,( zyx

L

  

IV. NUMERICAL RESULTS AND DISCUSSION 

 Let us first compare the distributions of gas density and temperature obtained using the two kinetic 

approaches with the density and temperature distributions obtained by the analytical model. The results for the 

most rarefied case, = 5.24·10L -4 m and = 0.5 (Table 1) are presented in Fig. 3. As one can see an 

agreement between the DSMC and ES-BGK solutions seems very reasonable almost everywhere accept the 

region closed to the wall. However, the density and temperature distributions obtained by the analytical 

approach are far-off from the kinetic distributions. This observation has a simple explanation. In all analytical 

models of the Knudsen layer [1-12], the Knudsen layer is considered as a zero-dimensional interface between 

the wall and gas bulk. However, in this situation, where the thickness of the Knudsen layer is about the gap 

between the walls, Fig. 3, this approximation is rather not valid. The differences between the kinetic and 

Kn
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analytical distributions of macroparameters decrease as the Knudsen number decreases as shown in Fig. 4, 

where = 5.24·10L -3 m and = 0.05 (Table 1).  Kn
 

Fig. 3. Profiles of density and temperature between  
           ablative plates for two kinetic approaches and  
           the analytic model for L = 5.24·10-4 m 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

As one can see, the differences between the profiles of macroparameters obtained by kinetic modeling and 

using analytical approximations are much smaller here than for the case of = 5.24·10L -3 shown in Fig. 3, but 

still noticeable. These differences again can be explained by neglecting the thickness of the Knudsen layer in 

the analytical model [11]. 

 

Fig. 4. Profiles of density and temperature between  
           ablative plates for two kinetic approaches and  
           the analytic model for L = 5.24·10-3 m 
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 The effect of thermal non-equilibrium in the ES-BGK solution is illustrated in Fig. 5, where the 

computed distribution function of longitudinal velocity is compared to the corresponding Maxwellian 

distribution function with the local temperature and velocity,  for = 5.24·10L -4 at . The ratio of the 

ES-BGK to the Maxwellian distribution is also shown in Fig. 5. In the central region (the velocity is close to the 

averaged longitudinal velocity,  in Eq. (9)), the deviation of the computed function from the Maxwellian 

distribution is relatively small, while for the tails of the distribution functions it reaches a factor of two and 

more. 

2/Lx =

bulku

Fig. 5. Longitudinal velocity distribution functions in the center of the 
           computational domain L = 5.24·10-4 m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The most important properties that the analytical model is expected to provide are the mass, 

momentum, and energy fluxes from cold to hot ablative surfaces. Comparison of the fluxes computed using 

different approaches is given in Table 2. With an increase in the distance between the plates the mass fluxes 

decrease while the energy fluxes increase for all three models. The decrease in the mass flux is associated with 

lower flow velocities in the longitudinal direction, Eq. (9), and the increase in the energy flux is related to 

smaller impact of reverse thermal fluxes directed from hot to cold surface, Eq. (11). The momentum flux 

practically does not change with the distance between plates, because it is related mostly to the gas bulk 

pressure, Eq. (10), which in turn is determined by the outflow conditions on the plates (equilibrium vapor 

pressures) and not by the distance between the plates.  
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             Table 2. Mass, energy, and momentum fluxes 

 Analytical ES-BGK DCMS 

     L    2·λmnf       Mx        Px     Ex     Mx      Px     Ex     Mx     Ex

  m   m kg·m-2·s-1 kg·m-2·s-2    W·m-2 kg·m-2·s-1 kg·m-2·s-2  W·m-2 kg·m-2·s-1  W·m-2

5.24e-4  2.62e-4  1.043e-2 1.8252e+2  4.585e+3  1.193e-2 1.8253e+2  2.836e+3 1.178e-2  2.638e+3

1.31e-3  2.62e-4  8.910e-3 1.8245e+2  6.755e+3  9.475e-3 1.8246e+2  6.280e+3  

2.62e-3  2.62e-4  7.994e-3 1.8238e+2  8.060e+3  8.249e-3 1.8240e+2  7.978e+3     

5.24e-3  2.62e-4  7.412e-3 1.8234e+2  8.887e+3  7.553e-3 1.8234e+2  8.955e+3 7.380e-3  8.832e+3

1.31e-2  2.62e-4  7.106e-3 1.8231e+2  9.322e+3  7.198e-3 1.8232e+2  9.433e+3    

2.62e-2  2.62e-4  7.075e-3 1.8231e+2  9.366e+3  7.169e-3 1.8231e+2  9.485e+3  

 

The relative differences between analytical, ES-BGK, and DSMC results calculated by the following formula, 
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α     (19) 

 

where index α  denotes either analytical or DSMC solution, are shown in Table 3. The differences between the 

analytical and kinetic solutions for ≥ 5.24·10L -3 are within the numerical error of the computations. For the 

smaller (larger Knudsen numbers), there is a noticeable differences between the kinetic solutions and 

analytical approach. The differences in the energy fluxes  and  reach about 7% and 61%, 

respectively, for = 5.24·10

L

DSMSxE ,
ˆ

analytxE ,
ˆ

L -4. Such differences are expected because the ES-BGK model is a simplification of 

the Boltzmann equation, and the analytical approximation assumes a small deviation from the Maxwellian 

distribution function (small Knudsen numbers). The ES-BGK model works better for relatively large Knudsen 

numbers than the analytical approximation, Table 3.  However, for = 1.31·10L -3 the differences in mass and 

energy fluxes obtained by ES-BGK and analytical approaches are about 6% and -7.6%, respectively.   

Thus, we may conclude that the numerical results presented in this paper clearly show that the Pekker-

Keidar-Cambier analytical model [11] of the Knudsen layer gives the reasonable approximations for mass, 

energy, and momentum fluxes for Knudsen number smaller than 0.2.  
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    Table 3. Relative differences between analytical,  
                   ES-BGK, and DSMC results 

L  
mfpλ⋅2  analytxM ,

ˆ
analytxE ,

ˆ  DSMCxM ,
ˆ

DSMCxE ,
ˆ  

m m % % % % 

5.24e-4 2.62e-4 12.55 -61.65 1.25 6.99 

1.31e-3 2.62e-4 5.96 -7.56   

2.62e-3 2.62e-4 3.09 -1.02   

5.24e-3 2.62e-4 1.87 0.76 2.29 2.49 

1.31e-2 2.62e-4 1.28 1.17   

2.62e-2 2.62e-4 1.31 1.26   
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